
Journal of Applied Mechanics and Technical Physics, Vol. 42, No. 4, pp. 638–646, 2001

SCATTERING OF SURFACE WAVES

BY THE EDGE OF A FLOATING ELASTIC PLATE

UDC 532.591L. A. Tkacheva

The diffraction of plane surface waves by a semi-infinite floating plate in a fluid of finite depth is
studied. An explicit analytical solution of the problem is obtained using the Wiener–Hopf technique.
Simple exact formulas for reflection and transmission coefficients and their asymptotic expressions
are derived. Results of numerical calculations using the obtained formulas are presented.

The behavior of a floating flexible plate in waves has been examined previously in studies of flexural-gravity
waves in a liquid covered by an ice sheet (see reviews [1, 2]). Recent interest in this problem is motivated by
its relation to the design of artificial islands, floating airports and various marine platforms. Various numerical
methods have been developed to solve the problem, in particular, for an infinite plate (see, e.g., [3–5]). However,
all these methods yield reliable results only for large and intermediate wavelengths and are inadequate for short
incident waves. Analytical solutions based on the Wiener–Hopf technique were obtained for oblique incidence in a
fluid of finite depth [6], for a stratified fluid [7], for normal incidence in an infinitely deep fluid [8], and for oblique
incidence using the Timoshenko–Mindlin equation for flexural vibrations of a plate [9]. The solutions derived in
all the papers cited are expressed in terms of unknown coefficients which are determined from a system of linear
algebraic equations. The coefficients of the system have a complicated form. The explicit solution of the system
obtained in [10] yields exact values of the sought-for coefficients, an explicit expression for the velocity potential,
and simple exact formulas for reflection and transmission coefficients in the case of normal incidence in an infinitely
deep fluid. In the present paper, similar formulas are derived for a fluid of finite depth.

Formulation of the Problem. We assume that the surface of an ideal and incompressible fluid of finite
depth H is partly covered by a semi-infinite thin elastic plate. A plane incident wave of small amplitude propagates
normally to the edge of the plate, and the length of the incident wave is great compared to the plate thickness.
We introduce Cartesian coordinates (x, y) with origin O at the plate edge and the Ox axis directed along the plate
(Fig. 1). The draught of the plate is neglected so that the boundary conditions are imposed at the undisturbed
free-surface level. The problem is solved in a linear formulation.

The velocity potential ϕ satisfies the Laplace equation

∆ϕ = 0 (y < 0). (1)

The boundary conditions are written as

∂ϕ

∂y
= 0 (y = −H, −∞ < x <∞), ϕy = ηt (y = 0, −∞ < x <∞),

D
∂4η

∂x4
+ ρ0h

∂2η

∂t2
= p, p = −ρ(ϕt + gη) (y = 0, x > 0), (2)

ϕt + gη = 0 (y = 0, x < 0).
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Fig. 1. Scheme of the flow.

Here η is the vertical displacement of the free surface (plate), g is the acceleration of gravity, D is the flexural
rigidity, h and ρ0 are thickness and density of the plate, respectively, and t is time. At the plate edge, the bending
moment and the external force must be zero:

∂2η

∂x2
=
∂3η

∂x3
= 0 (x = 0, y = 0). (3)

We introduce the nondimensional variables ϕ′ = ϕ/(A
√
gl ), x′ = x/l, y′ = y/l, t′ = t

√
g/l, and H ′ = H/l,

where A is the incident-wave amplitude and l = g/ω2 is the characteristic length. Below, the primes are omitted.
The potential ϕ can be expressed as

ϕ = (ϕ0 + ϕ1)e−iωt, ϕ0 = eiγxcosh(γ(y +H))/cosh (γH),

where ϕ0 is the incident-wave potential, ϕ1 is the diffraction potential, γ is the wavenumber of the incident wave,
defined by the dispersion relation for surface waves at water depth H: γ tanh (γH)−1 = 0. Then, using (1)–(3), we
can formulate a boundary-value problem for ϕ1. The function ϕ1(x, y) satisfies Eq. (1) and the following boundary
conditions:

∂ϕ1

∂y
= 0 (y = −H,−∞ < x <∞); (4)

∂ϕ1

∂y
− ϕ1 = 0 (y = 0, x < 0); (5)

(
β
∂4

∂x4
+ 1− δ

)∂ϕ1

∂y
− ϕ1 = B eiγx (y = 0, x > 0); (6)

∂2

∂x2

∂ϕ

∂y
=

∂3

∂x3

∂ϕ

∂y
= 0 (x = 0, y = 0). (7)

Here β = D/(ρgl4), δ = ρ0h/(ρl) are nondimensional parameters of the problem and B = δ − βγ4. In addition,
radiation conditions should be satisfied for |x| → ∞ and the solution should be regular at the plate edge, i.e., the
energy must be limited locally. The above assumptions imply that δ � 1. Here and below, the value of δ is set
equal to zero.

Dispersion Relations. Let us consider the propagation of waves in a fluid with a free surface and under
the plate. The corresponding solutions of the Laplace equation should satisfy condition (4) at the bottom and the
pertinent condition at the upper boundary, written as eiαxcosh (α(y +H))/cosh (αH).

1. Surface Waves. For surface waves, the values of α must satisfy the dispersion relation α tanh (αH)−1 = 0,
which has two real roots ±γ and a countable set of purely imaginary roots ±γj (j = 1, 2, . . .), which are symmetric
about the real axis [3].
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Fig. 2. Wavenumber α0 versus β for various H.

2. Flexural-Gravity Waves. For waves propagating in the plate (so-called flexural-gravity waves), the dis-
persion relation (βα4 + 1)α tanh (αH) − 1 = 0 has two real roots ±α0, a countable set of purely imaginary roots
±αj (j = 1, 2, . . .), which are symmetric about the real axis, and four complex roots, which are symmetric about
the real and imaginary axes [3]. The roots located in the first and second quadrants are denoted by α−1 and α−2,
respectively.

The real roots of the dispersion relations correspond to propagating waves while the remaining roots define
edge waves, which decay exponentially away from the edge. The dependence of the wavenumber α0 on β for various
values of H is shown in Fig. 2. For H > 3, the values of α0 are practically independent of H. However, for small
values of H and β, the effect of water depth becomes significant, so that α0 →∞ as H → 0. For the limiting values
of H and β, the asymptotic behavior of the root α0 is given by the following relations: α0 → (βH)−1/6 as H → 0;
at the limit H →∞, the value of α0 tends to the real root of the equation βα5 + α− 1 = 0, which corresponds to
an infinitely deep fluid [10]. In addition, α0 → (βH)−1/6 as β →∞ and α0 → γ as β → 0.

Analytical Solution of the Problem. The solution is derived using Jones’ version of the Wiener–Hopf
technique [11]. We introduce the following functions of the complex-valued variable α:

Φ+(α, y) =

∞∫
0

eiαxϕ1(x, y) dx, Φ−(α, y) =

0∫
−∞

eiαxϕ1(x, y) dx, (8)

Φ(α, y) = Φ+(α, y) + Φ−(α, y).

The functions Φ+(α, y) and Φ−(α, y) are defined in the upper (Imα > 0) and lower (Imα < 0) half-planes,
respectively. By analytic continuation, these functions can be defined over the entire complex plane.

Let us study the behavior of the functions Φ±(α, y). At the limit x→ −∞, the diffraction potential represents
a reflected wave of the form R e−iγx and a set of exponentially decaying waves. The wave that decays most slowly
corresponds to the root γ1. Hence, Φ−(α, y) is analytic in the half-plane Imα < |γ1| except in the pole at α = γ. At
the limit x→∞, the potential ϕ1 represents a transmitted wave with wavenumber α0, a wave with wavenumber γ,
which compensates for ϕ0, and a set of exponentially decaying modes. Therefore, the function Φ+(α, y) is analytical
in the half-plane Imα > −c except in the poles at α = −α0 and α = −γ (c = min{Imα−1, |α1|} is a positive number
that corresponds to the least decaying mode in the plate).

The function Φ(α, y) represents the Fourier transform of ϕ1(x, y) and satisfies the equation
∂2Φ/∂y2 − α2Φ = 0. The general solution of this equation subject to condition (4) at the bottom has the form

Φ(α, y) = C(α) cosh (α(y +H))/cosh (αH). (9)
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Fig. 3. Analyticity regions S± for the functions Φ±.

We use D±(α) to denote integrals of the type (8) in which the integrand ϕ1 is replaced by the left side of boundary
condition (5); F±(α) denotes similar integrals with the integrand given by the left side of expression (6). These
integrals are Fourier transforms of the generalized functions [12] and satisfy the following relations:

D+(α) +D−(α) = C(α)(α tanh (αH)− 1), F+(α) + F−(α) = C(α)[(βα4 + 1)α tanh (αH)− 1]. (10)

From boundary conditions (5) and (6), we have D−(α) = 0 and F+(α) = −B/(i(α + γ)). In view of this,
relations (10) are written as

D+(α) = C(α)(α tanh (αH)− 1), F−(α)− B

i(α+ γ)
= C(α)[(βα4 + 1)α tanh (αH)− 1]. (11)

Equations (11) yield

D+(α) =
α tanh (αH)− 1

(βα4 + 1)α tanh (αH)− 1

(
F−(α)− B

i(α+ γ)

)
. (12)

Let us introduce K(α) = K1(α)/K2(α), where K1(α) and K2(α) are dispersion functions for the free-surface
waves and the flexural-gravity waves, respectively: K1(α) = α tanh (αH)−1 and K2(α) = (βα4 +1)α tanh (αH)−1.
It should be noted that these functions are even.

Following the Wiener–Hopf technique, we must factorize the function K(α), i.e., write it as

K(α) = K+(α)K−(α), (13)

where the functions K±(α) are regular in the same domains as the functions Φ±(α, y). The function K(α) has
zeros and poles on the real axis at the points ±γ and ±α0, respectively. It can easily be shown that |α1| < |γ1|.
Therefore, we consider the analyticity regions S+ and S− (S+ is the half-plane Imα > −c with cuts that exclude
the points α0 and γ, S− is the half-plane Imα < c with cuts that exclude the points −α0 and −γ) (see Fig. 3).

Let us introduce the function g(α) = K(α)β(α2−α2
0)(α2−α2

−1)(α2−α2
−2)/(α2−γ2). The function g(α) has

no zeros, is bounded, and tends to unity at infinity. We factorize g(α) as follows [11]: g(α) = g+(α)g−(α), where

g±(α) = exp

[
± 1

2πi

∞∓id∫
−∞∓id

log g(x)
x− α

dx

]
, d < c. (14)

The functions K±(α) are defined by

K+(α) =
(α+ γ)g+(α)√

β(α+ α0)(α+ α−1)(α+ α−2)
, K−(α) =

(α− γ)g−(α)√
β(α− α0)(α− α−1)(α− α−2)

, (15)

and K+(α) = K−(−α).
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Equation (12) is written as

K−(α)
(
F−(α)− B

i(α+ γ)

)
=
D+(α)
K+(α)

or

K−(α)F−(α)− B

i(α+ γ)
(K−(α)−K−(−γ)) =

D+(α)
K+(α)

+
BK−(−γ)
i(α+ γ)

.

The functions on the left and right sides of this equation are analytical in the regions S− and S+, respectively.
Analytic continuation of these functions defines a function that is analytical over the entire complex plane. By
Liouville’s theorem, this function is a polynomial. The degree of the polynomial is determined by the behavior of
the functions as |α| → ∞.

Local limitedness of energy implies that the singularity at the plate edge is of order not higher than O(r−λ)
(λ < 1 and r is the distance from the plate edge). Hence, as |α| → ∞, the functions F−(α) and D+(α) have orders
not less than O(|α|λ+3) and O(|α|λ−1), respectively [12]. Since g±(α)→ 1 at |α| → ∞, the functions K±(α) are of
order O(|α|−2) at infinity. Thus, the degree of the polynomial is equal to unity and

D+(α)
K+(α)

+
BK−(−γ)
i(α+ γ)

=
BK−(−γ)

i
(a+ bα),

where a and b are unknown constants to be determined from (7).
Solving the last equation for D+(α) and taking into account (9) and (11), we obtain

ϕ1(x, y) =
BK−(−γ)

2πi

∞∫
−∞

e−iαx
cosh (α(y +H))K+(α)

cosh (αH)K1(α)

(
a+ bα− 1

α+ γ

)
dα,

(16)

∂ϕ

∂y
(x, 0) = eiγx +

BK−(−γ)
2πi

∞∫
−∞

e−iαx
α tanh (αH)K+(α)

K1(α)

(
a+ bα− 1

α+ γ

)
dα.

The integration contour should completely lie in the domain of intersection of the regions S+ and S−. For example,
the integration contour can run along the real axis, passing below the points α0 and γ and above the points −α0

and −γ.
Let us consider the case x > 0. In view (13), the second expression in (16) is written as

∂ϕ

∂y
(x, 0) = eiγx +

BK−(−γ)
2πi

∞∫
−∞

e−iαx α tanh (αH)
K−(α)K2(α)

(
a+ bα− 1

α+ γ

)
dα.

For x > 0, we close the contour in the lower half-plane and obtain the poles at points −γ and −αj (j = −2,−1, . . .).
The residue at the point −γ is compensated for by the incident wave. Hence,

∂ϕ

∂y
(x, 0) = −BK−(−γ)

∞∑
j=−2

eiαjx αj tanh (αjH)
K−(−αj)K ′2(−αj)

(
a− bαj −

1
γ − αj

)
.

Substituting this expression into boundary conditions (7), we obtain the following system of second-order algebraic
linear equations for the unknowns a and b:(

A11 A12

A21 A23

)(
a

b

)
=

(
C1

C2

)
. (17)

The matrix coefficients are given by

A11 =
∞∑

j=−2

α3
j tanh (αjH)

K−(−αj)K ′2(−αj)
, A12 = iA21,

A21 =
∞∑

j=−2

α4
j tanh (αjH)

K−(−αj)K ′2(−αj)
, A22 = −

∞∑
j=−2

α5
j tanh (αjH)

K−(−αj)K ′2(−αj)
.
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The quantities C1 and C2 entering into the right side of (17) have the forms

C1 =
∞∑

j=−2

α3
j tanh (αjH)

K−(−αj)K ′2(−αj)(γ − αj)
, C2 =

∞∑
j=−2

α4
j tanh (αjH)

K−(−αj)K ′2(−αj)(γ − αj)
.

System (17) can be written as(
γU3 − U4 −γU4 + U5

γU4 − U5 −γU5 + U6

)(
a

b

)
=

(
U3

U4

)
, (18)

where Um =
∞∑

j=−2

αmj tanh (αjH)
K−(−αj)K ′2(−αj)(γ − αj)

.

Let us show that the coefficients U5 and U6 are zero. Then, the system obtained can be solved explicitly.
Replacing the sum by integral and taking into account that α5

j tanh (αjH) = −K1(αj)/β, we obtain

Um =
(−1)m−1

2πiβ

∞∫
−∞

K1(α)αm−5 dα

(γ + α)K−(α)K2(α)
, m = 5, 6.

In view of (13), we have

Um =
(−1)m−1

2πiβ

∞∫
−∞

αm−5K+(α) dα
γ + α

, m = 5, 6.

In the upper half-plane, the integrand is regular, and as |α| → ∞, it decreases not more slowly than α−2 does.
Hence, U5 = U6 = 0. System (18) yields a = 1/γ and b = −1/γ2.

Substituting the expressions for a and b into (16), we obtain

ϕ1(x, 0) = −BK−(−γ)
2πiγ2

∞∫
−∞

e−iαx
K+(α)α2 dα

K1(α)(γ + α)
.

We now can find the reflected and transmitted waves. For |x| → ∞, the potential is given by ϕ(x, 0) = R e−iγx as
x→ −∞ or ϕ(x, 0) = T eiα0x as x→∞. The expressions for R and T are

R =
βγK2

+(γ)
2K ′1(γ)

, T = − βγ2K−(−γ)α2
0

(γ − α0)K−(−α0)K ′2(−α0)
.

With allowance for the nondimensionalizing performed, the amplitude |R| represents the reflection coefficient.
Substituting expressions (15) into the above formulas, we obtain the amplitudes |R| and |T |. The integral in Eq. (14)
can be calculated along the real axis [11]. As a result, we obtain

|g+(γ)| =
√
g(γ) =

√
β(γ2 − α2

0)|γ2 − α2
−1| |γ2 − α2

−2| |K ′1(γ)|
2γ|K2(γ)|

,

|K+(γ)| =

√
2γ(γ − α0)|K ′1(γ)|
(γ + α0)|K2(γ)|

.

The reflection coefficient is given by |R| = |(γ − α0)/(γ + α0)|. Similarly, we find

|K+(α0)| =

√
(γ + α0)|K1(α0)|

2α0(γ − α0)|K ′2(α0)|
.

Then, the formula for |T | becomes

|T | = 2
γ + α0

√
γ|K ′1(γ)|

tanh (α0H)|K ′2(α0)|
.
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Fig. 4. Reflection coefficient |R| (curves 1) and transmission coefficient T ∗ (curves 2) versus
β for H = 100 (solid curves) and 0.5 (dashed curves).

For normal wave incidence, the exact energy-balance relation between |R| and |T | obtained in [6, 9] can be
written as

|R|2 + |T |2 α0 tanh (α0H)|K ′2(α0)|
|K ′1(γ)|

= 1.

This relation is satisfied by the expressions obtained for the amplitudes. We note that the exact formulas for |R| and
|T | obtained in the present paper coincide with the approximate formulas given in [9], where |R| is derived under
the assumption of continuity of displacements across the edge, i.e., for a = b = 0, and the formula for |T | is obtained
from the energy-balance relation. Actually, the coefficients a and b are nonzero, but a+ bγ = 0, which explains the
good agreement between calculations by these formulas and calculations taking into account the parameter δ [9].

Next, we can evaluate the parameters of interest for the transmitted wave. The amplitude of plate displace-
ments in the transmitted wave is given by |η| = |T |α0 tanh (α0H). The right side of this equation represents the
transmission coefficient

T ∗ =
2α0

γ + α0

√
γ|K ′1(γ)| tanh (α0H)

|K ′2(α0)|
.

In the literature, one can find various definitions of the transmission coefficient. In most papers, the trans-
mission coefficient is defined as the ratio of the amplitude of vertical displacements in the transmitted wave to
the incident-wave amplitude [3–6]. However, in [9], the transmission coefficient is defined as the ratio between the
potentials amplitudes in transmitted and incident waves.

The plate deflection is given by

exx = −h
2
∂2η

∂y2
.

The maximum deflection of the plate in the transmitted wave has the amplitude emax = Ahe/(2l2), where e =
|T |α3

0 tanh (α0H).
Limiting Cases. Let us find asymptotic formulas for the reflection and transmission coefficients for large

and small values of H and β. For β → ∞, i.e., for a very rigid plate or short incident waves, we have α0 =
(βH)−1/6 +O(β−1/2). Then,

|R| = 1− 2(βH)−1/6/γ +O(β−1/2), T ∗ = 2β−1/3H1/6
√
K ′1(γ)/(6γ) +O(β−1/2).

For β → 0, i.e., for a very flexible plate or long incident waves, α0 = γ−βγ4/K ′1(γ)+O(β2). The coefficients
are given by

|R| = β
γ3

2K ′1(γ)
+O(β2), T ∗ = 1− β 6γ3 + 3γ3H(γ2 + 1)

2K ′1(γ)
+O(β2).

644



Fig. 5. Amplitude of the potential |T | versus β for various H.

Fig. 6. Nondimensional maximum deflection amplitude e versus β for various H.

For small depth (H → 0), we have α0 = (βH)−1/6 +O(H1/2). Then,

|R| = 1− 2γ(βH)1/6 +O(H1/3), T ∗ = 2β−1/6H1/3
√
γK ′1(γ)/6 +O(H1/2).

At the limit H →∞, we have the model of an infinitely deep fluid [10].
Numerical Results. The above calculations revealed that the reflection and transmission coefficients

depend weakly on the fluid depth but are very sensitive to variation in the parameter β. The dependences of the
reflection and transmission coefficients on β are shown in Fig. 4 for H = 100 and H = 0.5. In the examined range
of β, the values of |R| and T ∗ for H = 100 practically coincide with the corresponding values for an infinitely
deep fluid [10]. For small values of β, the plate behaves as a thin film and does not affect wave propagation. The
reflection coefficient is small, and the transmission coefficient is close to unity. For large values of β, the plate is
very rigid, and the reflection coefficient and transmission coefficients tend to unity and zero, respectively.

Curves of the potential amplitude |T | versus β for various H are shown in Fig. 5. The strong dependence
on the fluid depth can be clearly seen. Curves of nondimensional maximum strains of the plate in the transmitted
wave versus β are shown in Fig. 6 for various fluid depths. As is evident from Fig. 6, for small H and β, the strains
of the plate can be appreciable, which is explained by large values of the wavenumber α0 (see, Fig. 2). Thus, long
waves, especially in shallow water, is the most serious hazard to the plate from the viewpoint of structural failure.

This work was supported by the Foundation of Integration Programs of the Siberian Division of the Russian
Academy of Sciences (Grant No. 1).
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